Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Int J Gen Med ; 17: 971-983, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495923

RESUMO

Aim of the Study: This study analyzes research on TCM formulae in CHD over the past 30 years, using VOSviewer and CiteSpace. It aims to highlight key trends and hotspots in the field. Materials and Methods: The core database of Web of Science was collected, and the search time range was from the establishment of the database to the present (August 2023) for the literature related to the study of TCM prescriptions in CHD, and the information on the number of literature, countries, journals, authors, institutions, keywords were summarized by applying the software VOSviewer and CiteSpace. Results: A total of 135 kinds of literature were included. The number of published journal papers on research on TCM therapeutic formulae for CHD showed an upward trend; China was the most prolific country in this field; the largest number of papers were published in Evid Based Complement Alternat Med, MEDICINE; the average number of citations for authors and institutional analysis revealed that Xu Hao of China Academy of Traditional Chinese Medicine, Mao Jingyuan of Tianjin University of Traditional Chinese Medicine, and Shang Hongcai of Beijing University of Traditional Chinese Medicine constituted the core team of researchers studying the study of TCM formulae for CHD; the keyword analysis suggests that there are mainly 42 specifically named TCM formulae for the treatment of CHD, which are classified into a total of 7 major categories, and the research direction is mainly in the clinical efficacy study of different TCM therapeutic formulae and other aspects. Conclusion: This study shows that there are more types of TCM therapeutic formulae for CHD, and the related research has a good prospect. It is foreseeable that more relevant research results will rely on the study of network pharmacology, signalling pathways, and action targets of TCM therapeutic formulae.

2.
Mol Aspects Med ; 96: 101257, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38430667

RESUMO

Mammalian E3 ubiquitin ligases have emerged in recent years as critical regulators of cellular homeostasis due to their roles in targeting substrate proteins for ubiquitination and triggering subsequent downstream signals. In this review, we describe the multiple roles of WWP2, an E3 ubiquitin ligase with unique and important functions in regulating a wide range of biological processes, including DNA repair, gene expression, signal transduction, and cell-fate decisions. As such, WWP2 has evolved to play a key role in normal physiology and diseases, such as tumorigenesis, skeletal development and diseases, immune regulation, cardiovascular disease, and others. We attempt to provide an overview of the biochemical, physiological, and pathophysiological roles of WWP2, as well as open questions for future research, particularly in the context of putative therapeutic opportunities.


Assuntos
Transdução de Sinais , Ubiquitina-Proteína Ligases , Animais , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Diferenciação Celular , Carcinogênese , Mamíferos
3.
Commun Biol ; 7(1): 382, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553562

RESUMO

Autophagy is a dynamic self-renovation biological process that maintains cell homeostasis and is responsible for the quality control of proteins, organelles, and energy metabolism. The E1-like ubiquitin-activating enzyme autophagy-related gene 7 (ATG7) is a critical factor that initiates classic autophagy reactions by promoting the formation and extension of autophagosome membranes. Recent studies have identified the key functions of ATG7 in regulating the cell cycle, apoptosis, and metabolism associated with the occurrence and development of multiple diseases. This review summarizes how ATG7 is precisely programmed by genetic, transcriptional, and epigenetic modifications in cells and the relationship between ATG7 and aging-related diseases.


Assuntos
Autofagossomos , Autofagia , Proteína 7 Relacionada à Autofagia/genética , Autofagossomos/metabolismo , Autofagia/genética , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
4.
Int J Biol Macromol ; 265(Pt 2): 130961, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508558

RESUMO

Previous studies have progressively elucidated the involvement of E3 ubiquitin (Ub) ligases in regulating lipid metabolism. Ubiquitination, facilitated by E3 Ub ligases, modifies critical enzymes in lipid metabolism, enabling them to respond to specific signals. In this review, we aim to present a comprehensive analysis of the role of E3 Ub ligases in lipid metabolism, which includes lipid synthesis and lipolysis, and their influence on cellular lipid homeostasis through the modulation of lipid uptake and efflux. Furthermore, it explores how the ubiquitination process governs the degradation or activation of pivotal enzymes, thereby regulating lipid metabolism at the transcriptional level. Perturbations in lipid metabolism have been implicated in various diseases, including hepatic lipid metabolism disorders, atherosclerosis, diabetes, and cancer. Therefore, this review focuses on the association between E3 Ub ligases and lipid metabolism in lipid-related diseases, highlighting enzymes critically involved in lipid synthesis and catabolism, transcriptional regulators, lipid uptake translocators, and transporters. Overall, this review aims to identify gaps in current knowledge, highlight areas requiring further research, offer potential targeted therapeutic approaches, and provide a comprehensive outlook on clinical conditions associated with lipid metabolic diseases.


Assuntos
Transtornos do Metabolismo dos Lipídeos , Doenças Metabólicas , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Metabolismo dos Lipídeos , Lipídeos
5.
J Adv Res ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38123019

RESUMO

BACKGROUND: Cardiovascular disease (CVD) has been the leading cause of death worldwide for many years. In recent years, exosomes have gained extensive attention in the cardiovascular system due to their excellent biocompatibility. Studies have extensively researched miRNAs in exosomes and found that they play critical roles in various physiological and pathological processes in the cardiovascular system. These processes include promoting or inhibiting inflammatory responses, promoting angiogenesis, participating in cell proliferation and migration, and promoting pathological progression such as fibrosis. AIM OF REVIEW: This systematic review examines the role of exosomes in various cardiovascular diseases such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, heart failure and cardiomyopathy. It also presents the latest treatment and prevention methods utilizing exosomes. The study aims to provide new insights and approaches for preventing and treating cardiovascular diseases by exploring the relationship between exosomes and these conditions. Furthermore, the review emphasizes the potential clinical use of exosomes as biomarkers for diagnosing cardiovascular diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW: Exosomes are nanoscale vesicles surrounded by lipid bilayers that are secreted by most cells in the body. They are heterogeneous, varying in size and composition, with a diameter typically ranging from 40 to 160 nm. Exosomes serve as a means of information communication between cells, carrying various biologically active substances, including lipids, proteins, and small RNAs such as miRNAs and lncRNAs. As a result, they participate in both physiological and pathological processes within the body.

6.
Cell Rep ; 42(11): 113402, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37943659

RESUMO

Oxidative stress-induced autophagy helps to prevent cellular damage and to maintain homeostasis. However, the regulatory pathway that initiates autophagy remains unclear. We previously showed that reactive oxygen species (ROS) function as signaling molecules to activate the ATM-CHK2 pathway and promote autophagy. Here, we find that the E3 ubiquitin ligase TRIM32 functions downstream of ATM-CHK2 to regulate ATG7 ubiquitination. Under metabolic stress, ROS induce ATM phosphorylation at S1981, which in turn phosphorylates CHK2 at T68. We show that CHK2 binds and phosphorylates TRIM32 at the S55 site, which then mediates K63-linked ubiquitination of ATG7 at the K45 site to initiate autophagy. In addition, Chk2-/- mice show an aggravated infarction phenotype and reduced phosphorylation of TRIM32 and ubiquitination of ATG7 in a stroke model. We propose a molecular mechanism for autophagy initiation by ROS via the ATM-CHK2-TRIM32-ATG7 axis to maintain intracellular homeostasis and to protect cells exposed to pathological conditions from stress-induced tissue damage.


Assuntos
Estresse Oxidativo , Ubiquitina-Proteína Ligases , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Autofagia
7.
Basic Res Cardiol ; 118(1): 48, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938421

RESUMO

Cardiovascular disease (CVD) is a major threat to human health, accounting for 46% of non-communicable disease deaths. Glycolysis is a conserved and rigorous biological process that breaks down glucose into pyruvate, and its primary function is to provide the body with the energy and intermediate products needed for life activities. The non-glycolytic actions of enzymes associated with the glycolytic pathway have long been found to be associated with the development of CVD, typically exemplified by metabolic remodeling in heart failure, which is a condition in which the heart exhibits a rapid adaptive response to hypoxic and hypoxic conditions, occurring early in the course of heart failure. It is mainly characterized by a decrease in oxidative phosphorylation and a rise in the glycolytic pathway, and the rise in glycolysis is considered a hallmark of metabolic remodeling. In addition to this, the glycolytic metabolic pathway is the main source of energy for cardiomyocytes during ischemia-reperfusion. Not only that, the auxiliary pathways of glycolysis, such as the polyol pathway, hexosamine pathway, and pentose phosphate pathway, are also closely related to CVD. Therefore, targeting glycolysis is very attractive for therapeutic intervention in CVD. However, the relationship between glycolytic pathway and CVD is very complex, and some preclinical studies have confirmed that targeting glycolysis does have a certain degree of efficacy, but its specific role in the development of CVD has yet to be explored. This article aims to summarize the current knowledge regarding the glycolytic pathway and its key enzymes (including hexokinase (HK), phosphoglucose isomerase (PGI), phosphofructokinase-1 (PFK1), aldolase (Aldolase), phosphoglycerate metatase (PGAM), enolase (ENO) pyruvate kinase (PKM) lactate dehydrogenase (LDH)) for their role in cardiovascular diseases (e.g., heart failure, myocardial infarction, atherosclerosis) and possible emerging therapeutic targets.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Humanos , Fosforilação Oxidativa , Aldeído Liases , Redes e Vias Metabólicas
8.
Complement Ther Med ; 77: 102978, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37634763

RESUMO

OBJECTIVE: Tai Chi (TC) is a complementary therapy for knee osteoarthritis (KOA). Although systematic reviews (SRs) and meta-analyses (Mas) of efficacy studies have been published, the results remain uncertain, and their quality has not yet been fully evaluated. Here, we summarize the existing SRs/Mas, evaluate their quality and level of evidence, and provide a reference for the effectiveness of TC. METHODS: SRs/Mas of TC therapy for KOA published before February 2023 were retrieved from eight databases in Chinese and English. The Assessing the Methodological Quality of Systematic Reviews 2 (AMSTAR-2), the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020, and the Risk of Bias in Systematic (ROBIS) scale were used to assess methodological quality, reporting quality, and risk of bias. RESULTS: Seven SRs/Mas were finally included. One was deemed high quality by AMASTAR-2, while the rest were of critically low quality. In the PRISMA2020 assessment, the response rate of "Yes" for Q7, Q15, Q22, Q24, and Q27 was less than 50%. In the ROBIS assessment, three reports in Phase 3 were high risk and four were low risk. In the efficacy assessment, TC has shown varying degrees of improvement in physical function, pain, stiffness, 6-minute walk test, mental quality of life, TUG, and balance in patients with KOA. CONCLUSION: TC effectively treats KOA-associated pain, stiffness, body function, and mental quality of life. However, the low methodological quality of the studies and the high risk of migration reduced their reliability. Therefore, these conclusions should be taken with caution. High-quality, large-sample research is needed to provide stronger and more scientific evidence.


Assuntos
Osteoartrite do Joelho , Tai Chi Chuan , Humanos , Osteoartrite do Joelho/terapia , Qualidade de Vida , Reprodutibilidade dos Testes , Dor
9.
Biomed Pharmacother ; 166: 115228, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37557013

RESUMO

As a widely used lipid-lowering drug in clinical practice, atorvastatin is widely recognized for its role in protecting vascular endothelium in the cardiovascular system. However, a clear mechanistic understanding of its action is lacking. Here, we found that atorvastatin counteracted angiotensin II-induced vascular endothelial injury in mice with hypertension. Mechanistically, atorvastatin up-regulated WWP2, a E6AP C-terminus (HECT)-type E3 ubiquitin ligase with an essential role in regulating protein ubiquitination and various biological processes, thereby rescuing vascular endothelial injury. By ubiquitinating ATP5A (ATP synthase mitochondrial F1 complex subunit alpha), WWP2 degraded ATP5A via the proteasome pathway, stabilizing Bcl-2/Bax in the mitochondrial pathway of apoptosis. Moreover, atorvastatin further ameliorated death of vascular endothelial cells and improved vascular endothelial functions under WWP2 overexpression, whereas WWP2 knockout abrogated these beneficial effects of atorvastatin. Furthermore, we generated endothelial cell-specific WWP2 knockout mice, and this WWP2-mediated mechanism was faithfully recapitulated in vivo. Thus, we propose that activation of a WWP2-dependent pathway that is pathologically repressed in damaged vascular endothelium under hypertension is a major mechanism of atorvastatin. Our findings are also pertinent to develop novel therapeutic strategies for vascular endothelial injury-related cardiovascular diseases.


Assuntos
Células Endoteliais , Hipertensão , Camundongos , Animais , Atorvastatina/farmacologia , Células Endoteliais/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo , Camundongos Knockout , Hipertensão/tratamento farmacológico
10.
Cell Res ; 33(9): 679-698, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37443257

RESUMO

The sarcomeric interaction of α-myosin heavy chain (α-MHC) with Titin is vital for cardiac structure and contraction. However, the mechanism regulating this interaction in normal and failing hearts remains unknown. Lactate is a crucial energy substrate of the heart. Here, we identify that α-MHC undergoes lactylation on lysine 1897 to regulate the interaction of α-MHC with Titin. We observed a reduction of α-MHC K1897 lactylation in mice and patients with heart failure. Loss of K1897 lactylation in α-MHC K1897R knock-in mice reduces α-MHC-Titin interaction and leads to impaired cardiac structure and function. Furthermore, we identified that p300 and Sirtuin 1 act as the acyltransferase and delactylase of α-MHC, respectively. Decreasing lactate production by chemical or genetic manipulation reduces α-MHC lactylation, impairs α-MHC-Titin interaction and worsens heart failure. By contrast, upregulation of the lactate concentration by administering sodium lactate or inhibiting the pivotal lactate transporter in cardiomyocytes can promote α-MHC K1897 lactylation and α-MHC-Titin interaction, thereby alleviating heart failure. In conclusion, α-MHC lactylation is dynamically regulated and an important determinant of overall cardiac structure and function. Excessive lactate efflux and consumption by cardiomyocytes may decrease the intracellular lactate level, which is the main cause of reduced α-MHC K1897 lactylation during myocardial injury. Our study reveals that cardiac metabolism directly modulates the sarcomeric structure and function through lactate-dependent modification of α-MHC.


Assuntos
Insuficiência Cardíaca , Cadeias Pesadas de Miosina , Animais , Camundongos , Conectina/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miócitos Cardíacos/metabolismo , Lactatos/metabolismo
11.
FASEB J ; 37(8): e23110, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37490283

RESUMO

The ubiquitin-proteasome system is a crucial mechanism for regulating protein levels in cells, with substrate-specific E3 ubiquitin ligases serving as an integral component of this system. Among these ligases are SMAD-specific E3 ubiquitin-protein ligase 1 (SMURF1) and SMAD-specific E3 ubiquitin-protein ligase 2 (SMURF2), which belong to the neural precursor cell-expressed developmentally downregulated 4 (NEDD4) subfamily of Homologous to E6-AP COOH terminus (HECT)-type E3 ligases. As E3 ligases, SMURFs have critical functions in regulating the stability of multiple proteins, thereby maintaining physiological processes such as cell migration, proliferation, and apoptosis. The occurrence of many diseases is attributed to abnormal cell physiology and an imbalance in cell homeostasis. It is noteworthy that SMURFs play pivotal roles in disease progression, with the regulatory functions being complex and either facilitative or inhibitory. In this review, we elucidate the mechanisms by which SMURF1 and SMURF2 can regulate disease progression in non-cancerous diseases. These significant findings offer potential novel therapeutic targets for various diseases and new avenues for research on SMURF proteins.


Assuntos
Apoptose , Ubiquitina-Proteína Ligases , Humanos , Movimento Celular , Progressão da Doença , Ubiquitina
12.
Diabetes Metab Syndr ; 17(6): 102791, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37271078

RESUMO

AIMS: To understanding the net regional, national, and economic effect of global population ageing on diabetes and its trends during 1990 and 2019 worldwide. METHODS: We employed a decomposition method to estimate the impact of population ageing on diabetes-related disability-adjusted life years (DALYs) and total deaths in 204 countries from 1990 to 2019 at the global, regional, and national level. This method separated the net effect of population ageing from population growth and changes in mortality. RESULTS: Globally, population ageing has become the major contributor to diabetes-related deaths since 2013. The increases in diabetes-related deaths attributed to population ageing exceeding the decreases in mortality change. Population ageing produced an additional 0.42 million diabetes-related deaths and 14.95 million DALYs from 1990 to 2019. At the regional level, population ageing is associated with the increases in diabetes-related deaths in 18 out of 22 regions. The highest increase in diabetes-related deaths attributed to population ageing occurred in men in East Asia (136.31%) and women in Central Latin America (118.58%). The proportion of diabetes-related deaths and DALYs attributable to population ageing showed a bell-shaped relationship with sociodemographic index (SDI) and peaked at high-middle-SDI countries. CONCLUSIONS: The decreases in diabetes-related deaths attributed to mortality change exceeded the increases attributed to population ageing between 1990 and 2019 globally and regionally. The diabetes-related deaths in high-middle-SDI countries were most impacted by population ageing.


Assuntos
Diabetes Mellitus , Anos de Vida Ajustados pela Incapacidade , Masculino , Humanos , Feminino , Anos de Vida Ajustados por Qualidade de Vida , Envelhecimento , Fatores de Risco
13.
BMC Cancer ; 23(1): 526, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291499

RESUMO

NEDD4 family represent an important group of E3 ligases, which regulate various cellular pathways of cell proliferation, cell junction and inflammation. Emerging evidence suggested that NEDD4 family members participate in the initiation and development of tumor. In this study, we systematically investigated the molecular alterations as well as the clinical relevance regarding NEDD4 family genes in 33 cancer types. Finally, we found that NEDD4 members showed increased expression in pancreas cancer and decreased expression in thyroid cancer. NEDD4 E3 ligase family genes had an average mutation frequency in the range of 0-32.1%, of which HECW1 and HECW2 demonstrated relatively high mutation rate. Breast cancer harbors large amount of NEDD4 copy number amplification. NEDD4 family members interacted proteins were enriched in various pathways including p53, Akt, apoptosis and autophagy, which were confirmed by further western blot and flow cytometric analysis in A549 and H1299 lung cancer cells. In addition, expression of NEDD4 family genes were associated with survival of cancer patients. Our findings provide novel insight into the effect of NEDD4 E3 ligase genes on cancer progression and treatment in the future.


Assuntos
Neoplasias , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Neoplasias/genética , Proteínas do Tecido Nervoso/genética
14.
Cardiovasc Diabetol ; 22(1): 107, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149668

RESUMO

BACKGROUND: Endothelial injury caused by Type 2 diabetes mellitus (T2DM) is considered as a mainstay in the pathophysiology of diabetic vascular complications (DVCs). However, the molecular mechanism of T2DM-induced endothelial injury remains largely unknown. Here, we found that endothelial WW domain-containing E3 ubiquitin protein ligase 2 (WWP2) act as a novel regulator for T2DM-induced vascular endothelial injury through modulating ubiquitination and degradation of DEAD-box helicase 3 X-linked (DDX3X). METHODS: Single-cell transcriptome analysis was used to evaluate WWP2 expression in vascular endothelial cells of T2DM patients and healthy controls. Endothelial-specific Wwp2 knockout mice were used to investigate the effect of WWP2 on T2DM-induced vascular endothelial injury. In vitro loss- and gain-of-function studies were performed to assess the function of WWP2 on cell proliferation and apoptosis of human umbilical vein endothelial cells. The substrate protein of WWP2 was verified using mass spectrometry, coimmunoprecipitation assays and immunofluorescence assays. The mechanism of WWP2 regulation on substrate protein was investigated by pulse-chase assay and ubiquitination assay. RESULTS: The expression of WWP2 was significantly down-regulated in vascular endothelial cells during T2DM. Endothelial-specific Wwp2 knockout in mice significantly aggravated T2DM-induced vascular endothelial injury and vascular remodeling after endothelial injury. Our in vitro experiments showed that WWP2 protected against endothelial injury by promoting cell proliferation and inhibiting apoptosis in ECs. Mechanically, we found that WWP2 is down-regulated in high glucose and palmitic acid (HG/PA)-induced ECs due to c-Jun N-terminal kinase (JNK) activation, and uncovered that WWP2 suppresses HG/PA-induced endothelial injury by catalyzing K63-linked polyubiquitination of DDX3X and targeting it for proteasomal degradation. CONCLUSION: Our studies revealed the key role of endothelial WWP2 and the fundamental importance of the JNK-WWP2-DDX3X regulatory axis in T2DM-induced vascular endothelial injury, suggesting that WWP2 may serve as a new therapeutic target for DVCs.


Assuntos
Diabetes Mellitus Tipo 2 , Ubiquitina-Proteína Ligases , Humanos , Camundongos , Animais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Baixo , Células Endoteliais/metabolismo , Diabetes Mellitus Tipo 2/complicações , Ubiquitinação , Camundongos Knockout , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo
16.
Heliyon ; 9(5): e15625, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37180910

RESUMO

Post-translational modifications regulate numerous biochemical reactions and functions through covalent attachment to proteins. Phosphorylation, acetylation and ubiquitination account for over 90% of all reported post-translational modifications. As one of the tyrosine protein kinases, spleen tyrosine kinase (SYK) plays crucial roles in many pathophysiological processes and affects the pathogenesis and progression of various diseases. SYK is expressed in tissues outside the hematopoietic system, especially the heart, and is involved in the progression of various cardio-cerebrovascular diseases, such as atherosclerosis, heart failure, diabetic cardiomyopathy, stroke and others. Knowledge on the role of SYK in the progress of cardio-cerebrovascular diseases is accumulating, and many related mechanisms have been discovered and validated. This review summarizes the role of SYK in the progression of various cardio-cerebrovascular diseases, and aims to provide a theoretical basis for future experimental and clinical research targeting SYK as a therapeutic option for these diseases.

17.
Oncogene ; 42(22): 1843-1856, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37081042

RESUMO

Oncogenic stress induces DNA damage repair (DDR) that permits escape from mitotic catastrophe and allows early precursor lesions during the evolution of cancer. SAMHD1, a dNTPase protecting cells from viral infections, has been recently found to participate in DNA damage repair process. However, its role in tumorigenesis remains largely unknown. Here, we show that SAMHD1 is up-regulated in early-stage human carcinoma tissues and cell lines under oxidative stress or genotoxic insults. We further demonstrate that de-ubiquitinating enzyme USP7 interacts with SAMHD1 and de-ubiquitinates it at lysine 421, thus stabilizing SAMHD1 protein expression for further interaction with CtIP for DDR, which promotes tumor cell survival under genotoxic stress. Furthermore, SAMHD1 levels positively correlates with USP7 in various human carcinomas, and is associated with an unfavorable survival outcome in patients who underwent chemotherapy. Moreover, USP7 inhibitor sensitizes tumor cells to chemotherapeutic agents by decreasing SAMHD1 in vitro and in vivo. These findings suggest that de-ubiquitination of SAMHD1 by USP7 promotes DDR to overcome oncogenic stress and affect chemotherapy sensitivity.


Assuntos
Dano ao DNA , Reparo do DNA , Humanos , Peptidase 7 Específica de Ubiquitina/genética , Proteína 1 com Domínio SAM e Domínio HD/genética , Ubiquitinação
18.
Circ Res ; 132(5): 601-624, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36786216

RESUMO

BACKGROUND: Hypertension can lead to podocyte damage and subsequent apoptosis, eventually resulting in glomerulosclerosis. Although alleviating podocyte apoptosis has clinical significance for the treatment of hypertensive nephropathy, an effective therapeutic target has not yet been identified. The function of septin4, a proapoptotic protein and an important marker of organ damage, is regulated by post-translational modification. However, the exact role of septin4 in regulating podocyte apoptosis and its connection to hypertensive renal damage remains unclear. METHODS: We investigated the function and mechanism of septin4 in hypertensive nephropathy to discover a theoretical basis for targeted treatment. Mouse models including Rosa 26 (Gt(ROSA)26Sor)-SIRT2 (silent mating type information regulation 2 homolog-2)-Flag-TG (transgenic) (SIRT2-TG) mice SIRT2-knockout, and septin4-K174Q mutant mice, combined with proteomic and acetyl proteomics analysis, followed by multiple molecular biological methodologies, were used to demonstrate mechanisms of SIRT2-mediated deacetylation of septin4-K174 in hypertensive nephropathy. RESULTS: Using transgenic septin4-K174Q mutant mice treated with the antioxidant Tempol, we found that hyperacetylation of the K174 site of septin4 exacerbates Ang II (angiotensin II)- induced hypertensive renal injury resulting from oxidative stress. Proteomics and Western blotting assays indicated that septin4-K174Q activates the cleaved-PARP1 (poly [ADP-ribose] polymerase family, member 1)-cleaved-caspase3 pathway. In septin4-knockdown human renal podocytes, septin4-K174R, which mimics deacetylation at K174, rescues podocyte apoptosis induced by Ang II. Immunoprecipitation and mass spectrometry analyses identified SIRT2 as a deacetylase that interacts with the septin4 GTPase domain and deacetylates septin4-K174. In Sirt2-deficient mice and SIRT2-knockdown renal podocytes, septin4-K174 remains hyperacetylated and exacerbates hypertensive renal injury. By contrast, in Rosa26-Sirt2-Flag (SIRT2-TG) mice and SIRT2-knockdown renal podocytes reexpressing wild-type SIRT2, septin4-K174 is hypoacetylated and mitigates hypertensive renal injury. CONCLUSIONS: Septin4, when activated through acetylation of K174 (K174Q), promotes hypertensive renal injury. Septin4-K174R, which mimics deacetylation by SIRT2, inhibits the cleaved-PARP1-cleaved-caspase3 pathway. Septin4-K174R acts as a renal protective factor, mitigating Ang II-induced hypertensive renal injury. These findings indicate that septin4-K174 is a potential therapeutic target for the treatment of hypertensive renal injury.


Assuntos
Hipertensão Renal , Hipertensão , Animais , Humanos , Camundongos , Apoptose , Hipertensão Renal/genética , Rim/metabolismo , Camundongos Transgênicos , Proteômica , Sirtuína 2/genética , Sirtuína 2/metabolismo
19.
Ann Transl Med ; 11(3): 145, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36846009

RESUMO

Background: With the development of technology and the renewal of traditional Chinese medicine (TCM) diagnostic equipment, artificial intelligence (AI) has been widely applied in TCM. Numerous articles employing this technology have been published. This study aimed to outline the knowledge and themes trends of the four TCM diagnostic methods to help researchers quickly master the hotspots and trends in this field. Four TCM diagnostic methods is a TCM diagnostic method through inspection, listening, smelling, inquiring and palpation, the purpose of which is to collect the patient's medical history, symptoms and signs. Then, it provides an analytical basis for later disease diagnosis and treatment plans. Methods: Publications related to AI-based research on the four TCM diagnostic methods were selected from the Web of Science Core Collection, without any restriction on the year of publication. VOSviewer and Citespace were primarily used to create graphical bibliometric maps in this field. Results: China was the most productive country in this field, and Evidence-Based Complementary and Alternative Medicine published the largest number of related papers, and the Shanghai University of Traditional Chinese Medicine is the dominant research organization. The Chengdu University of Traditional Chinese Medicine had the highest average number of citations. Jinhong Guo was the most influential author and Artificial Intelligence in Medicine was the most authoritative journal. Six clusters separated by keywords association showed the range of AI-based research on the four TCM diagnostic methods. The hotspots of AI-based research on the four TCM diagnostic methods included the classification and diagnosis of tongue images in patients with diabetes and machine learning for TCM symptom differentiation. Conclusions: This study demonstrated that AI-based research on the four TCM diagnostic methods is currently in the initial stage of rapid development and has bright prospects. Cross-country and regional cooperation should be strengthened in the future. It is foreseeable that more related research outputs will rely on the interdisciplinarity of TCM and the development of neural networks models.

20.
Front Physiol ; 13: 1004330, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439256

RESUMO

Acute leukemia is a common hematologic tumor with highly genetic heterogeneity, and many factors are involved in the pathogenesis and drug-resistance mechanism. Emerging evidence proves that E3 ubiquitin ligases participate in the acute leukemic signaling pathways via regulating substrates. This review summarized the E3 ligases which can affect the leukemic signal. It is worth noting that the abnormal signal is often caused by a deficiency or a mutation of the E3 ligases. In view of this phenomenon, we envisioned perspectives associated with targeted agonists of E3 ligases and proteolysis-targeting chimera technology. Moreover, we emphasized the significance of research into the upstream factors regulating the expression of E3 ubiquitin ligases. It is expected that the understanding of the mechanism of leukemic signaling pathways with which that E3 ligases are involved will be beneficial to accelerating the process of therapeutic strategy improvement for acute leukemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...